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Waves in a perfectly conducting elastic medium are considered in two
cases: 1) at the free surface of a medium occupying an infinite half-
space and located in a homogeneous constant magnetic field; 2) at

the interface of two media one of which is located in a magnetic field.
At a certain relative velocity instability develops. A similar problem
was investigated in [1] for zero magnetic field and a critical velocity
was obtained. This paper examines the instability due to vibrations
propagating at right angles to the magnetic field.

The equation describing the propagation of small
deformations of a perfectly conducting elastic body in
a homogeneous constant magnetic field H has the form

oI
pu = T, (1
M=oy + __.[(H26,1--2H ) divu -+
+ (HV) (Hyuy, + Hyty — Oy (Hu))], (2)
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Here, p isthe density of the medium, u thedisplace-
ment vector, G, A Lamé coefficients, and pu the perme-
ability of the medium.

In the case of plane deformation in atransverse mag-
netic field, when uy =0, H = {0, H, 0} and the deriv-
atives with respect to y are equal to zero, the wave
described by Eq. (1) decomposes into two independently
propagating parts, one of which describes the expan-
sion waves, and the other the shear waves [2]. A sim-
ilar decomposition is observed when the finite, but
small conductivity of the medium is taken into account
{3]. However, if the magnetic field lies in the plane of
the displacement vector, the expansion and shear
waves are interrelated. For the two nonzero compo-
nents of the vector u we have the equations

@6+ x4 6o (6 M) ot —pu =0,
: 3
/ pH
126+ B T
L WHE O, oy Py -
+(G+-‘§R—)-W (G + N g —ou =0 (4)

In this case

o a
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Starting from these equations we will determine the
frequency of the surface magnetoelastic waves prop-
agating along the magnetic field.

Let the elastic, perfectly conducting medium occupy
the infinite halfspace z < 0. The infinite plane bounding
this medium on one side is taken as the xy plane. The
magnetic field is directed along the x axis and is non-
zero only in the half space occupied by the medium.
The solution of Egs. (4) is represented in the form
exp [i(wt — kx) + yz)]. The condition of compatibility of
the two homogeneous equations, i.e., zero determin-
ant of the system, gives a biquadratic equation for
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whose solution is
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Two other solutions correspond to an infinite in~
crease in the deformations in the direction into the
medium. When H = 0

fi=VE—0*/QC+N), to=VE—p®/C ;

in this case v; and vy, determine the dependence on z
for thelongitudinal and transverse waves, respectively,
[4]. Thus, the solution of system (4) has the form

= (Aevé - Bevs?) gltot-kx) (4, B = const),
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At the free surface the boundary condition

<6iko + 4 [Hin —*;—5ihﬂz] + Hik) ng=0 (5

47

is satisfied. Here, n is the unit vector along the
normal to the perturbed surface of the medium, ¢y’
is the stress tensor in the unperturbed state, which
has only one component ¢5,° = 1/8uH?%/7).
Substituting (2) and (3) into (5) and taking into account
that ni = 6z ~ Viu,, we write the boundary condition
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in the linear approximation as follows:
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Equating the determinant of system (8) to zero, we

obtain an equation for the dependence of the frequency

w on k:
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Here, ¢ is Poisson's ratio. Equation (7) gives ¢ as

a function of the Poisson's ratio ¢ and the dimension-
less parameter v,

At v = 0 Eq. (7) goes over into the equation for the Rayleigh sur-
face wave velocity. We will determine the roots of expression (7) at
o= 0.25, v= 1. By means of numerical calculation it is possible to
convince oneself that in the region of real values Eq. (7) has two roots,
which correspond to vibrations decaying at infinity. The first root
makes the expression (b'2 - 4a'c*)*/? vanish and is equal to £ = 0.618,
In the region of values of ¢ satisfying the condition (b* - 4a'¢’) < 0
expression (7) may be conveniently rewritten in the form

X [a"rz’f (i '2;25/\ — -1 2v)}} =0.

This equation is satisfied at £, = 1.53. At values of £ > ¢, the
roots of Eq. (7) lead to purely imaginary solutions for y,' and, conse-
quently, the vibrations are sustained as z~> -, Thus, along the mag-
netic field two waves may be propagated with velocities

0 [ k=8VG/p, 0,/ k=EEVC/p.

In this case the Rayleigh wave velocity (if 0= 0.25, then £ = 0.916
for Rayleigh waves) lies in the interval between wy/k and wy/k.

We will consider two perfectly conducting elastic
media with a plane interface, which is taken as the
xy plane. As before, the magnetic field is nonzero
only in the half-space z < 0, but is now directed along
the y axis. Medium 2, which occupies the upper half-
space, moves relative to medium 1 at velocity v along
the x axis. We will consider an elastic wave at the

interface between the two media, when the derivatives
with respect to y are equal to zero and uy = 0. With
these assumptions the solution of Eq. (1) in region 1
is conveniently found in the form u = grad ¢ + rot{j®),

100,
wi

p= /
295

/i
v
.

4298

. 485}

280 8
g % .

Fig. 1

where the first term describes the expansion waves
and the second the shear waves. For the potentials ¢
and ¥ we have {2]

010" — (2Gy + M YA w) Ap =0,

PP — GiAp =0 (A— Far T+ ;zz; (8)

Equations (8) make it possible to obtain the disper-
sion equation for the waves at the interface and to
study the instability associated with these waves. The
instability of relative motion of two elastic media in
the presence of a magnetic field was previously ex—
amined in [5].

I the potentials ¢, ¥ are found in the form

¢ = A’eik(w.t—x)m.kz, l{) = Bleihwit-x) <2k 2 s

then from (8) we obtain
Wity
(2Gy ~+ My + Yautd? [ 50)
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In order for the vibrations to damp in the direction
into medium 1, it is necessary that Re «; >0, Re §; >
> 0. Let a weak pressure perturbation of the form p =
= pg explik(w; t = x)] develop at the interface. Then the
constants A', B' are found from the following boundary
condition:

(czh + o {H HA‘—' -5 Hﬂ + Hik) ny=—pn;. (9)
Substituting (2), (3) in (9) and taking into account
that ng = 0kz — Vi ugz, we write the boundary condition

in the linear approximation as follows:

2G4 a’—f—(h-k—)dwu-- P,
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H2\ Ou, du, .
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After simple calculations we can obtain an expres-
sion for the displacement of points on the surface of
medium 1 along the z axis:
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When H = 0 formula (10} coincides with the corresponding expres-
sion of [1}. Equating the denominator of (10) to zero, we obtain an
equation for the frequency of the surface waves propagating on the
free smrface at right angles to the magnetic field. For fixed values of
the Poisson’s ration o and the dimensionless parameter v this equation
has only one root w;* satisfying the condition Re ot; > 0, Re 81 > 0,
Figure 1 shows the quantity W* = w1%/(Gy/p)*’? as a function of o at
v = 1, For comparison the same figure includes the analogous curve
for v = 0, which determines the velocity w,* of the Rayleigh surface
waves as a function of Poisson’s ratio.

The displacement uz(z) for medium 2 is obtained
from Eg. (10) in which the magnetic field must be set
equal to zero and wy replaced by wy = w; — v. Thus,

P
uz(‘&) = = f2 (wg),
wapa o

TG A — (TR
@t = 1 —wylpy / (2G, +4,),
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In this case Re ay < 0, Re By < 0, since medium 2 oc-
cupies the half-space z > 0,

From the condition of equality of the displacements
of surface points of media 1 and 2 we find an equation
for the relation between wy and k:

Gy () = G,-z‘lfzb(wz)y ‘

Wy, =w, — U, (11)

If an incompressible perfect fluid flows over the
elastic magnetized medium, then instead of (11) we

have the equation
Gy wy) = —wy st

When the complex velocity, determined in solving
Egs. (11), has a negative imaginary part, the vibra-
tions will increase with time, and the state of the
system will be unstable.

Let wy = ay — ie, where 0 < a; < +%; then the func-
tion f3 on the complex planef gives a certain curve,
whose form is represented in Fig, 2 by a solid
line, The arrow indicates the direction to be followed
around the curve as a4 increases from 0 to +«. The
point Ay corresponds fo the value of the function f
at @y = [p;"1(2Gy + Ay + pH2/471/2 and the point B,
to the value of the function at a, = +«, Under the
transformation effected by the function f; a straight
line parallel to the real axis and displaced through an
infinitely small distance into the lower half plane goes
over into the curve denoted by a dashed line in Fig, 2,
The arrow indicates the direction to be followed around
the curve as ay varies from —« to +~; in this case
when ay changes sign the curve passes from the upper
to the lower half-plane, The form of this curve is es-
sentially the same as that presented in [1].

The points A, and By correspond to values of the
function £ at @, = = ((2Gy + Apy )Y % and g, = -,
respectively, The intersection of the solid and
dashed lines means that Egs, (11) admit solutions for
the velocity w; having a negative imaginary part.

If v =0, then ay> 0 (considering that @y = a¢; — v)
and f , gives only that part of the curve located in the
lower half plane.

This corresponds to Egs. (11) having a solution
only at real values of wy. If v #0, then, as may be
seen from Fig. 2, the dashed and solid lines may
intersect, this intersection occurring when:

(1y a1<VGl/p1, [ {<V G2/ pa,
(2 L@ > VG T A+ Y () pr Y,
la2] >V (2G: + ha) oot

Since a; + iayl = v, the first condition corresponds

-to smaller values of the relative velocity. If the inter-

section occurs in the first octant, then w*; <v < (wy* +
+ (Gi/pi)l/ 2; similarly, for the second octant W2*< v <
w4+ (Go/m) 2. At velocities v < min {w,*, w,*} there
are only real solutions, In this case, in complete cor-
respondence with [1], the solution is determined from a

&

a,
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graphic construction. For this purpose, starting from
the first of Eqs. (11), we construct 2 graph of wy =

= F(wy), when 0 < ay| < (Go/pp "% and on it plot the
straight line a5 = a; — v.

The point of intersection determines the solution
(Fig. 3). At v > v, the solution of Egs. (11) passes
into the region of complex values of w, having a neg-
ative imaginary component. A similar argument can
also be made for negative values of ay. We determined
the critical velocity v, for two identical media at v =1
and ¢ = 2/7; it was found that v, = 1.78(G/P)1/2. At
v =0, in accordance with the results of 1], the crit-
ieal velocity is eqgual to twice the Rayleigh wave ve-
locity, i.e., vx = 1.85(G/p)‘/2. Thus, a transverse
magnetic field has almost no effect on the critical
velocity.

The author thanks M. 1. Kiselev for his helpful
suggestions.
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